A flexible lab-on-a-chip for the synthesis and magnetic separation of magnetite decorated with gold nanoparticles.
نویسندگان
چکیده
Magnetite decorated with gold nanoparticles (Fe3O4-AuNPs) is a ferrimagnetic material with unprecedented applications in immunosensors, as a contrast agent for imaging diagnosis, and for the photothermal ablation of tumor cells. Here, we show the preparation of controlled amounts of Fe3O4-AuNPs without organic solvents, surfactants, or heat treatment. For this, we have developed a customized natural-rubber-based microfluidic device (NRMD) as a flexible lab-on-a-chip for the decoration of Fe3O4 with AuNPs. With a novel NRMD configuration, monodisperse Fe3O4-NPs (ϕ = 10 nm) decorated with AuNPs (ϕ = 4 nm) were readily obtained. The AuNPs were homogenous in terms of their size and their distribution on the Fe3O4-NP surfaces. Furthermore, the lab-on-a-chip was projected with an internal system for magnetic separation, an innovation in terms of aqueous/carrier phase separation. Finally, the nanomaterials produced with this NRMD are free of organic solvents and surfactants, allowing them to be used directly for medical applications.
منابع مشابه
Synthesis of Three-Layered Magnetic Based Nanostructure for Clinical Application
The main objective of this research was to synthesize and characterize gold-coated Fe3O4 /SiO2 nanoshells for clinical applications. Magnetite nanoparticles (NPs) were prepared via co-precipitation. The results showed that smaller particles can be synthesized by decreasing the NaOH concentration, which in our case this corresponded to 35 nm by using 0.9 M of NaOH at 750 rpm. The NPs were then m...
متن کاملA New and Efficient Method for the Adsorption and Separation of Arsenic Metal Ion from Mining Waste Waters of Zarshouran Gold Mine by Magnetic Solid-Phase Extraction with Modified Magnetic Nanoparticles
Widespread arsenic contamination of mining wastewater of Zarshouran (West Azerbaijan province) has led to a massive epidemic of arsenic poisoning in the whole of surrounding areas. It is estimated that approximately all agriculture fields are being irrigated with the water that its arsenic concentrations elevated above the World Health Organization’s standard of 10 parts per billion. A novel ad...
متن کاملInvestigation of Desulfurization Activity, Reusability, and Viability of Magnetite Coated Bacterial Cells
Background: Magnetic separation using magnetic nanoparticles can be used as a simple method to isolate desulfurizing bacteria from a biphasic oil/water system. Objectives: Magnetite nanoparticles were applied to coat the surface of Rhodococcus erythropolis IGTS8 and Rhodococcus erythropolis FMF desulfurizing bacterial cells, and the viability and...
متن کاملCore-shell nanoparticles for medical applications: effects of surfactant concentration on the characteristics and magnetic properties of magnetite-silica nanoparticles
Objective(s): The use of cationic surface-active agents (surfactant) in the synthesis of nanoparticles, with formation of micelle, can act as a template for the formation of meso-porous silica. Changes in the concentration of surfactants can affect the structures and properties of the resulting nanoparticles.Materials and Methods: Magnetite nanoparticles were prepared as cores using the c...
متن کاملSynthesis and Characterization of a Novel Fe3O4-SiO2@Gold Core-Shell Biocompatible Magnetic Nanoparticles for Biological and Medical Applications
Objectives: The study of core-shell magnetic nanoparticles has a wide range of applications because of the unique combination of the nanoscale magnetic core and the functional shell. Characterization and application of one important class of core-shell magnetic nanoparticles (MNPs), i.e., iron oxide core (Fe3O4/γ-Fe2O3) with a silica shell and outer of gold (Fe3O4-SiO2@Gold (FSG)) in Boron Neut...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Lab on a chip
دوره 15 8 شماره
صفحات -
تاریخ انتشار 2015